New Buildings Institute
Advances in HVAC Technology: Fault Detection and Diagnostics

National Conference on Building Commissioning
April 2006

New Buildings Institute
White Salmon, WA
www.newbuildings.org & www.advancedbuildings.net

Formed in December 1997 as a not-for-profit public benefits corporation
Working with partners in: California, Northwest, Northeast & Midwest
Funding:
- Sponsors
- Grants
- Contracts
Changing markets through research, guidelines, codes, and training
Developed Advanced Buildings™ and Advanced Lighting Guide

New Buildings Institute Projects
- Advanced Automated HVAC Fault Detection and Diagnostics Commercialization Program
- Hot/Dry Air Conditioner Project
- Indirect Evaporative Cooler Monitoring Project
- Evaporative Cooler Market Assessment
- University of CA-CIEE Campus Project
- Building Performance Review
- Advanced Buildings / ALG Revision
- Getting to Fifty: www.advancedbuildings.net
- PNW and NEEP RTU-DTU Programs
FDD: So Who’s and What’s at Fault?

- 2/3’s HVAC systems large & small
- Everyone’s holding on tightly

FDD or Controls?

- It’s the controls, stupid...
- FDD is a natural control functionality
- Provides persistence & reliability of:
 - energy/demand savings
 - performance
 - efficiency
- Technology and training

Advanced, Automated HVAC Fault Detection and Diagnostics (FDD) Commercialization Program

DEVELOP & DEMONSTRATE:
- Advanced Fault Detection and Diagnostics Methods and Measurement Equipment for HVAC Systems Both Rooftop and Built Up
- More Advanced and More Fault Resistant HVAC Equipment
PIER FDD: Market Connections

- Identify/assess/implement activities/mechanisms to move successful FDD products into markets
- Influence codes/standards/regulators in California and nationally
- Strategic Partnerships

FDD Project 2: Web-Enabled Diagnostics System

Project Lead: Architectural Energy Corporation

- Based on NIST AHU Performance Assessment Rules-APAR
- Dual duct AHU/chiller systems
- Chiller/cooling tower diagnostics
- Customer data transmission to web-based diagnostic engine with UI
- Tridium first development partner
- Ongoing commissioning functionality

Current User Interface: Site tab

- Define and select sites and buildings
Current User Interface: Equipment

Define AHUs

Map required points to history archives

Current User Interface: Configure

Activate rules and FDD processing

Set fault detection parameters

FDD Project 2: Field Test Status

- Alpha testing (Colorado)
 Western Building Services has provided access to buildings in Denver area
 - Denver Athletic Club
 Multiple air handlers; district CHW and steam
 - Regis University (library)
 Large dual duct
 Currently, air handler rules are being evaluated; chiller and cooling tower data is not yet available
- Beta testing (California)
 Building has not yet been identified
FDD Project 2: Requirements for CA Test Site

- Required HVAC equipment:
 - Central plant equipment:
 - Chiller
 - Cooling tower
 - One or more air handlers
- Currently installed Niagara system (AX or R2) is highly desired
- Site suggestions are requested immediately

FDD Project 3: AHU-VAV Diagnostics

Project Lead: National Institute of Standards and Technology (NIST)

- AHU Performance Assessment Rules + VAV box control charts
- Very low cost; embedded in controller logic
- BACnet enabled; works through existing BAS
- 28 AHU faults, 7 VAV box faults; rule-based trend logging
- Current development partners: Alerton, Automated Logic Corporation, Delta Controls, Tour Andover Controls
- Case Study of 450 Golden Gate Bldg: 2 AHUs + 1000 VAV
- Ongoing commissioning functionality
- Algorithms in public domain
- www.archenergy.com/pier-fdd/

FDD Algorithms Field Sites

<table>
<thead>
<tr>
<th>Site descriptor</th>
<th>Location</th>
<th>Manufacturer</th>
<th>AHUs</th>
<th>VAVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC corporate headquarters building</td>
<td>Atlanta, GA</td>
<td>ALC</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>Philip Burton Federal Building</td>
<td>San Francisco, CA</td>
<td>Norton</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Marten corporate headquarters building</td>
<td>Redmond, WA</td>
<td>Norton</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>NIST campus</td>
<td>Gaithersburg, MD</td>
<td>Alerton + Andover</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Foley Federal Building</td>
<td>Las Vegas, NV</td>
<td>Delta</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Montgomery College Health Sciences Building</td>
<td>Takoma Park, MD</td>
<td>Norton</td>
<td>2</td>
<td>181</td>
</tr>
<tr>
<td>Pennsylvania Military Museum</td>
<td>Bensalem, PA</td>
<td>ALC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Shippenburg University</td>
<td>Shippenburg, PA</td>
<td>ALC</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Iowa Energy Center BDS</td>
<td>Ankeny, IA</td>
<td>Invensys</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

* in the works
FDD Algorithms - What's Next?

- AHU: dual duct, multi-zone
- Unit ventilators, fan coil units, zone reheat, zone dampers, unit/cabinet heaters
- A/C, heat pumps, evap coolers
- Chillers and boilers
- Cooling towers

FDD Project 4: Advanced Rooftop Unit

- Project Lead: Architectural Energy Corporation
- 5-ton rooftop unit prototype
- More robust operation
- Economizer enhancements
- FDD capabilities
- POC unit test about to begin

RTU Market

- In terms of number of systems installed, the most popular packaged DX system size is 5 tons, representing 24% of total units sold.
- Units up to 10 tons represent close to 90% of the total unit sales in new commercial buildings in California.
- 155 million square feet of new commercial building construction in CA each year
- Approximately 39 million square feet (25%) use packaged air conditioning units of 10 tons or less in capacity.
FDD Project 4: ARTU

- Economizer improvements
- Fan improvements
- Unit efficiency
- Refrigeration cycle improvements
- Fan controls
- Refrigerant control

- Thermostat capability
- Sensors
- Installation & checkout capability
- Advanced monitoring
- Embedded diagnostics

FDD Project 5: Rooftop Unit Diagnostics Project

Lead: Field Diagnostic Services, Inc.

- Automated data acquisition
- Wireless communications to website/email
- 25 alarm conditions; 5-50 tons; 1-2 stage
- Safety, energy, occupant comfort prioritized
- Trend log data graphed
- Utility costs/ROR on repair
- Ongoing commissioning functionality
Embedded Diagnostics Alarms

Refrigeration Cycle
- poor condenser heat transfer
- poor evaporator heat transfer
- refrigerant flow restriction
- low refrigerant charge
- high refrigerant charge
- low compressor pumping efficiency
- non-condensable gas in system
- sensor problem

Air Handler
- no economizer cooling at low OAT
- high outdoor air fraction when high OAT
- low outdoor air fraction when occupied
- DCV signal and low OSA fraction
- low mixed air temperature
- low airside temp difference during heat or cool
- high airside temp difference during heat or cool
- sensor problem

Controls
- continuous call for cooling or heating
- simultaneous heating and cooling
- fan cycling, not continuous during occupied period
- fan running continuous when unoccupied
- mechanical cooling at low OAT-no economizer
- t-stat cooling/heating demand, but no cooling/heating
- compressor short cycling sensor problem
- extended run time
- sensor problem
Embedded Diagnostic UI

Unit Status

Company: GSRC
Site: GSRC Atlanta
Unit: RTU-1
Expansion Device: TxV
Stg 1 Capacity: 15 tons
Model:
Number of Stages: 2
Refrigerant: R22
Stg 2 Capacity: 15 tons
Make: Trane
SEER: 10

Embedded Diagnostic UI

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU-1</td>
<td>OK</td>
<td>OK</td>
<td>1 alarm</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>RTU-2</td>
<td>OK</td>
<td>OK</td>
<td>1 alarm</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>RTU-3</td>
<td>OK</td>
<td>OK</td>
<td>1 alarm</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>RTU-4</td>
<td>OK</td>
<td>OK</td>
<td>1 alarm</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

Copyright 2005 Field Diagnostic Services, Inc. All rights reserved.

PIER PAC Mtg. May 22, 2002
Embedded Diagnostic UI

Alarm Category
- Equipment Safety Alarm: 2 Alarms
- Energy Savings Opportunity: 1 Alarm
- Comfort Alarm: OK
- Monitoring System Alarm: OK

Alarm Details
- **Description:** Evaporating temperature is lower than expected
- **Fault Condition:** Steady-state cooling operation and evaporating temperature less than 28°F
- **Occurrence Condition:** 10 minutes accumulated during a day
- **Possible Cause:** Low indoor airflow, refrigerant flow restriction
- **Possible Impact:** Frozen indoor coil, energy use
- **Alarm Trigger Date:** Jan 29, 2006
- **Alarm Last Observed Date:** Feb 03, 2006

Alarm History

<table>
<thead>
<tr>
<th>Unit</th>
<th>Alarm</th>
<th>Trigger Date</th>
<th>Event Date</th>
<th>Event Time</th>
<th>Username</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU-1</td>
<td>No Economizer Cooling at Low OAT</td>
<td>Dec 02, 2004</td>
<td>No Records Found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTU-1</td>
<td>Low Evaporating Temperature</td>
<td>Dec 05, 2004</td>
<td>No Records Found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTU-1</td>
<td>Short Compressor Off Time</td>
<td>Oct 21, 2005</td>
<td>No Records Found</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Buildings Institute

Embedded Diagnostic UI

Cooling Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Cooling Date</td>
<td>Nov 20, 2005</td>
</tr>
<tr>
<td>Mechanical Cooling Efficiency In</td>
<td>No Steady State Data Avai</td>
</tr>
<tr>
<td>Mechanical Cooling Runtime Frac</td>
<td>0.188</td>
</tr>
<tr>
<td>Economizer Cooling Runtime Frac</td>
<td>0</td>
</tr>
<tr>
<td>Cooling Cycles</td>
<td>N/A</td>
</tr>
<tr>
<td>Occupied Period Outdoor Air Frac</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Embedded Diagnostics-Results

- 5 buildings, 15 RTUs (HP/package), 5-15 tons
- monitored 4-10 months
- 60% with short compressor on cycles (<5")
 - reduced equipment life, part load perform
- 80% with short compressor off cycles (<5")
 - reduced equipment life

Transformative Technology

- Zero distance between building owner and service provider with what’s on the roof
- Installation and service quality are transparent
- Equipment flaws also transparent
FDD Project 6: SpeciFlow™ Technology
Project Lead: Federspiel Controls

- On the market: Greenheck Fan Corp IAQ-42
- High accuracy damper monitoring & control
- Peak savings from OA control
- LEED credit for OA control
- CA Title 24 Nonresidential compliant
- Integral controller-standalone or DDC

The Future Home of FDD & Remote Commissioning Services?

Midnight phone call from home?
No. It’s RTU #34 at the Commerce Mall reporting low refrigerant pressure. I’ll finish the recommissioning on Monday if the bears don’t get us.

(with apologies to the Notifact website)

Interested in More Information?

Mark Cherniack
New Buildings Institute
509-493-4468 x17
markc@newbuildings.org