George Bourassa, National Director, Commissioning Services
Robert Bucey, Program Manager

RETRO-COMMISSIONING
Learning Objectives

- Demonstrate global results of the analysis of energy conservation measures that represent the body of retro-commissioning activities performed in multiple buildings.
- Describe the processes that were adopted to identify potential energy conservation measures. These varied by client and specific program objectives.
- Describe the process to vet their technical viability and financial return on investment.
- Describe the various processes to implement the selected energy conservation measures and the monitoring and verification protocol for assessing.
- Discuss how to overcome the various challenges of implementing a retro-commissioning program in fully functional, occupied facilities.
Retro-Commissioning

• Over 75 Full-Time Commissioning Professionals
• Commissioned over 150 million SF of Total Space
• Retro-commissioned over 120 million SF
• Multiple client and building types

Cities labeled indicate presence of permanent commissioning personnel. Shaded states indicate project experience.
Experience

Commissioning and Retro-Commissioning

• Federal Government clients
 ○ US Air Force
 ○ USACE
 ○ GSA
 ○ Dept of Commerce
 ○ Dept of Interior
 ○ Dept of State
 ○ US Mission to United Nations
 ○ Environmental Protection Agency
Experience

Commissioning and Retro-Commissioning

• Non-Federal clients
 ○ The Art Institute of Chicago
 ○ Major universities
 ○ Pharmaceutical clients
 ○ Hospitals/Medical Centers
 ○ Local governments
 ○ Private clients
What is Retro-Commissioning?

- Systematic investigation process for improving and optimizing the operation and maintenance of buildings
- Primarily focuses on energy-using equipment and low-cost improvements rather than expensive capital-intensive retrofit measures
- Involves detailed study of building system operation
 - Faults in building systems are identified for resolution
 - Control changes may be recommended that increase energy efficiency
 - Economic analysis that calculates energy savings
 - Follow-up required to verify that measures have been correctly implemented and have held up over time (persistence)
- Can resolve problems that occurred during design or construction, or that have developed throughout the building’s life
Benefits

What is Retro-Commissioning?

• Occupant Comfort
 ○ Indoor air quality concerns
 ○ Reduce employee absenteeism
 ○ Reduce tenant turnover
 ○ Improve employee productivity
 ○ Improve thermal comfort
Benefits

What is Retro-Commissioning

• Improved Operation
 ○ Reduced maintenance calls
 ○ Train building technicians on RCx process
 ○ Create system-level benchmark to facilitate efficient monitoring of systems – ongoing Cx
 ○ Provide single document resource for O&M staff
Benefits

Why Retro-Commissioning

• Reduce Operating cost/Energy consumption
 ○ Problems never identified during initial building start-up
 ○ Systematic problems in building operation
 ○ Environmental problems
 ○ Excessive equipment run times due to changes in occupancy or space use
 ○ Malfunctioning equipment or sensors
 ○ Control optimization issues
 ○ Extend equipment life
Benefits

Where are the RCx opportunities?

• Simultaneous heating and cooling
• BAS programming vs. actual operation
• Correct and most efficient air damper sequencing
• Chilled water bypasses and leaks
• Battery charging schedule changes
• Corroded condenser coils
• Incorrect head pressure control and hot gas bypass connections
• Poor equipment access
• Equipment not responding to control system
• Temperature and humidity sensors out of calibration
• Control sequence not operating correctly
• Electric duct heaters with incorrect wiring
• Incorrect cooling load calculations
Compliance with Executive Orders

Federal clients

• Integrated Assessment, Operation, and Management
• Ongoing Commissioning Program
• Energy Intensity Reduction through Energy Efficiency
• On-Site Renewable Energy
• Measurement and Verification
• Energy Benchmarking/ENERGY STAR® Portfolio Manager
• Water Use Reduction
• Enhance Indoor Environmental Quality
The Process

Retro-Commissioning Process

Planning
- Perform Initial Site Survey
- Review System Design Documentation
- Develop Utility Benchmarking
- Perform Energy Audit
- Identify Initial Energy Conservation Measures
- Generate Issues Log
- Develop Detailed Work Plan

Investigation
- Implement Diagnostic Monitoring Plan
- Establish Current System Performance
- Engage Facility Management Staff in Planned Changes
- Develop Detailed Testing Procedures
- Implement Functional Testing Program
- Perform Seasonal Testing
- Update Energy Conservation Measures
- Prepare Draft Report

Implementation and Turnover
- Provide Detailed Scope of Work for Capital Improvement Projects
- Develop Cost Estimates
- Implement Modifications
- Measurement and Verification
- Provide Operator Training
- Prepare Final Retro-Commissioning Report
- Prepare Re-Commissioning Manual
- Provide Recommendations for Future Initiatives

Review Systems Operations

Optimize Performance

Train Staff
Planning

Initial Site Assessment

- Review Building Equipment
- Review Building Automated System (BAS)
- Identify Functional Testing Approach
- Documentation Review
Planning

Interview Technical Support Staff

- Owner and Occupants
- Operations Staff
- Facility Team
- HVAC/Controls Staff
Planning

Utility Benchmark

• Establish Baseline
 ○ Metering Data
 ○ Modeling
• Energy Use Index (EUI)
• Compare to Like Facilities
• Make Decisions about Facilities Energy Performance

A typical office building has an EUI of 92.9 kBTU/ft² per year. Inpatient healthcare facilities are typically just under 250 kBTU/ft² per year.
Planning

Develop Project Issues Log and List of Potential Energy Conservation Measures (ECMs)

- Issues Log Includes Recommendations and Priority
- ECM List Includes Description, Cost, Estimated Annual Savings and ROI.

<table>
<thead>
<tr>
<th>#</th>
<th>Equipment</th>
<th>Finding</th>
<th>Recommendation</th>
<th>Measurement Category</th>
<th>Priority</th>
<th>Status</th>
<th>Effect</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AHU</td>
<td>Supply VFD will not start or stop by BAC and occurs intermittently. 100% does not bring air to furnace.</td>
<td>Bring in VFD; facility: additional sensors to troubleshoot problem with drive and determine possible solutions.</td>
<td>2</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AHU</td>
<td>Return VFD needs to be replaced. It is being used for special point.</td>
<td>Replace return to drive and tie back in to DDC.</td>
<td>2</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AHU</td>
<td>Damper actuators are not responding to BAC.</td>
<td>Troubleshoot modules and replace if necessary.</td>
<td>2</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AHU</td>
<td>All dampers need adjusting and lubricated.</td>
<td>Adjust and lubricate all dampers and tighten all set-screws.</td>
<td>1</td>
<td>2</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Energy Conservation Measure</th>
<th>Project Description</th>
<th>Project Cost</th>
<th>Estimated Annual Operating Savings</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Winter Free Cooling</td>
<td>Install plate and frame heat exchangers piping and increase condenser that allows complete chiller shutdown during periods when outdoor conditions are high.</td>
<td>$350,000</td>
<td>$130,000</td>
<td>34%</td>
</tr>
<tr>
<td>2</td>
<td>Enable occupancy control</td>
<td>This initiative would be to enable the occupancy control feature that is currently programmed into the 2nd floor live spaces on cool utility.</td>
<td>$31,000</td>
<td>$23,000</td>
<td>84%</td>
</tr>
<tr>
<td>3</td>
<td>Implement occupancy strategy</td>
<td>The goal of this measure would be to implement occupancy strategy to ensure that would meet space temperature setpoints as well as airflow requirements.</td>
<td>$99,000</td>
<td>$49,000</td>
<td>50%</td>
</tr>
</tbody>
</table>
Planning

Retro Cx Planning Phase Report

- Retro-Cx Objectives
- Preliminary ECMs
- RCx Plan
- Functional Performance Testing (FPT) Approach
- Testing and Balance (TAB) Approach
Investigation

Diagnostic Monitoring

Fig. 1 Temperature data logger deployed

Fig. 2 Power data logger deployed

Fig. 3 Sample BAS Display

Fig. 4 Occupancy and photo sensor results for Operating Room

Fig. 5 AHU monitoring results
Functional Performance Testing

• Verify System Performance
• Point to Point Testing From BAS
• TAB Survey
• Compare to Design Intent and Current Use
• Update Issues Log and Proposed ECM List
Investigation

Energy Economic Analysis

• Use Baseline and Trend Data
• Energy Analysis
• Energy Calculations
• Cost Estimates
• Savings to Investment Ratio (SIR)
Investigation

Energy Analysis

• Usage Analysis
• Energy End-User Analysis (MMBTU/yr)
• Energy Star® Rating

Table 600-EA-1: Building 600: Emergency 1 Panel

<table>
<thead>
<tr>
<th>Line</th>
<th>Voltage (V)</th>
<th>Current (Amp)</th>
<th>Power (MW)</th>
<th>(MVA)</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>118.5</td>
<td>361</td>
<td>0.046</td>
<td>0.047</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>119.2</td>
<td>329</td>
<td>0.044</td>
<td>0.042</td>
<td>0.972</td>
</tr>
<tr>
<td>3</td>
<td>118.5</td>
<td>347</td>
<td>0.047</td>
<td>0.045</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Figure 600-EA-1: Building 600: Estimate of Total Energy Use by End-user (MMBTU/yr)
Investigation

Energy Calculations

- Energy Savings
- Modeling Strategies

![Energy Savings Calculations Table](image-url)
Cost Estimate

- RSMeans 2010 and Market Estimates
- Includes Soft Costs and O&P

ECM COST ESTIMATE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description of Items</th>
<th>Quantity</th>
<th>Unit of Measure</th>
<th>Material Cost Per Unit</th>
<th>Labor Cost Per Unit</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Demolition</td>
<td>Motors, 250/460 V, 60 Hz, 3 HP, electrical demolition, remove</td>
<td>2</td>
<td>EA</td>
<td>$ -</td>
<td>$ -</td>
<td>$ 42</td>
</tr>
<tr>
<td></td>
<td>Motors, 250/460 V, 60 Hz, 10 HP, electrical demolition, remove</td>
<td>2</td>
<td>EA</td>
<td>$ -</td>
<td>$ -</td>
<td>$ 47</td>
</tr>
<tr>
<td>2 Installation</td>
<td>Motors, totally enclosed, premium efficiency, 1.15 service factor, 1800 RPM, 250/460 V, 60 Hz, 5 HP</td>
<td>2</td>
<td>EA</td>
<td>$ 465</td>
<td>$ 930</td>
<td>$ 84</td>
</tr>
<tr>
<td></td>
<td>Motors, totally enclosed, premium efficiency, 1.15 service factor, 1800 RPM, 250/460 V, 60 Hz, 10 HP</td>
<td>2</td>
<td>EA</td>
<td>$ 810</td>
<td>$ 1,620</td>
<td>$ 94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 2,859</td>
</tr>
<tr>
<td></td>
<td>Subcontractor Overhead & Profit</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td>$ 765</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eielson Markup</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td>$ 663</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 3,978</td>
</tr>
</tbody>
</table>
Investigation

Savings to Investment Ratio (SIR)

• Prioritization Criteria
• Target Minimum SIR of 1.5
• Convert All “Savings” and “Investments” to Present Worth

\[\text{SIR} = \frac{\text{Equivalent Benefits}}{\text{Equivalent Costs}} \]
Investigation

Investigation Phase Report

• Trend Data Results
• FPT Results
• TAB Results
• Issues Log
• Energy Analysis
Implementation and Training

Implementation

• Minor O&M Fixes During the Investigation Phase
 ○ Balancing Valve Adjustments
 ○ Control Troubleshooting
• Develop Detailed SOW
• Detailed Cost Estimates
• Prioritized Spend Planning
• Measurement and Verification Planning
Implementation and Training

Project Turnover

- Final Report
- Training Plan
- Systems Manual
 - Systems Descriptions
 - O&M Plan
 - Re-commissioning Schedule
 - Single Line Diagrams
 - Ongoing Planning Commissioning
Industry Results

- Our experience: average 15% to 25% savings in energy alone; can be higher
- GSA ARRA Program: Identified 2,794 energy conservation measures in 50 buildings
- LBNL study of 643 buildings: over 10,000 energy-related problems, resulting in 16% median whole-building energy savings, with payback of 1.1 years
- LBNL: High-Tech building: saved $127,800
 Hospital: saved $6,700 – simple payback of 1 year
- LBNL: Office: saved $90,900 with immediate payback
Industry Results

<table>
<thead>
<tr>
<th>Target</th>
<th>Location</th>
<th>Energy savings</th>
<th>Project cost ($/sf)</th>
<th>Payback time (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local government buildings</td>
<td>California</td>
<td>14.3% source energy, 11% electricity, 34% gas</td>
<td>1.01</td>
<td>3.5</td>
</tr>
<tr>
<td>Class A offices</td>
<td>Connecticut</td>
<td>7.3% electricity</td>
<td>0.62</td>
<td>1.37</td>
</tr>
<tr>
<td>Mixed commercial</td>
<td>Colorado</td>
<td>7% electricity</td>
<td>0.185</td>
<td>1.51</td>
</tr>
<tr>
<td>University buildings</td>
<td>California</td>
<td>10% total source</td>
<td>1.00</td>
<td>2.5</td>
</tr>
<tr>
<td>Supermarkets</td>
<td>Central California</td>
<td>12.1% electricity</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>Mixed commercial</td>
<td>Oregon</td>
<td>10-15% electricity</td>
<td>0.175</td>
<td>1.24</td>
</tr>
<tr>
<td>Mixed commercial and educational</td>
<td>California</td>
<td>1.7-8.1% electricity</td>
<td>0.40</td>
<td>3.0</td>
</tr>
</tbody>
</table>
ROI Expectations: LBNL Study

Figure 10. Benchmarks for energy savings and cost-efficiency.

Energy Savings (%)
- Upper 25%-ile
- Median
- Lower 25%-ile

Commissioning Cost (US$2009/ft²)
- Existing Buildings (N=317)
- New Construction (N=73)

Cost Savings (US$2009/ft²-year)
- Existing Buildings (N=315)
- New Construction (N=38)
ROI Expectations: LBNL Study
Some RCx Lessons Learned

- Inadequate building documentation
- Access to building automation system data
- Systems “never ran right from day one”
- Zone level adjustments made but never tracked
- Changes made during construction
- “Improving Performance” may not always reduce energy consumption
- Set expectations up front
- Need buy in from all parties
Existing Building Retro-Cx

U.S. Air Force Eielson AFB and Eareckson AFB, Alaska
- Over 1 Million SF
- Comprehensive program
- Identified over $2.2M in Annual Energy Savings
- Prepared Design/Build Scope of Work Documents
- Provided Operator Training
Existing Building Retro-Cx

GSA Recovery Program Management, Nationwide

- 115 Million SF
- Over $5 billion
- Review all Major Modernization and New Construction Projects
- Review All Deep Energy Retrofits
- Engaged throughout Implementation
- 2,800 ECMs
Existing Building Retro-Cx

GSA Recovery Program Management, Nationwide

• Accuracy and Completeness of HPGB Measures
• National Consistency in Reporting and Interpretation to and by our Stakeholders
• Full Transparency and Candor of GSA’s “Story” under Recovery
Sources

- Narendra Amarnani, Brian Roberts, Nora Hernandez and Michael B. Lo. 2007; 1, 3, 5, 16. “Retro-commissioning (RCx) Sustainable Savings: Are We There Yet?”
- Mike Eardley. 2007; 2, 4, 10. “Persistence Tracking in a Retro-commissioning Program”
Portland Energy Conservation, Inc is a registered provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Thank you!
George Bourassa, PE, CCP, LEED AP
George.bourassa@jacobs.com
Robert Bucey, PE, CEM, LEED AP
Robert.bucey@jacobs.com