Commissioning the Data Center
The Integrated Systems Test

Michael Rosenberg
Senior Engineer
Glenmount Global Solutions
Overview of the Integrated Systems Test (IST)
Testing protocols performed during the IST.
Trend logs to demonstrate results of testing protocols over multiple test days including
- Electrical/thermal load capacitance
- Equipment staging
- Simulated mechanical failures
- Electrical failure scenarios.

Case studies to illustrate the value of the IST
- Potential facility failures
- Catastrophic breakdown of the facility systems
Current 2012 Beyond

GLENMOUNT GLOBAL SOLUTIONS LINE CARD

ENERGY, AUTOMATION & INDUSTRIAL INFORMATION SERVICES

CONSULTING, ENGINEERING
- Industrial Information (Balanced IT)
- IT
- Cyber Security
- Professional Engineering
- L & T SCADA Services
- Plant Imaging
- FRP Development
- Engineering Studies

Automation & Control
- Process Control
- System Design
- System Integration
- System Engineering
- System Startup
- System Testing

Maintenance & Support
- Ongoing Services
- Start-Up Support
- System Maintenance
- Plant Operation
- Collaborative Work
- On-Site Support
- Training Services
- Asset Management
- Software Test, Support
- Plant Operation

Program Management
- Technical, Schedule, and Cost Estimato Management
- Budget and Cost Estimation
- P/R Revised Development

ENERGY EXPERTISE

- Program Development
- Effectiveness Benchmarking
- Procurement Analysis
- Technology Assessments
- Enterprise Energy Management
- Plant, Site EMS/AMR
- ADR/DR Systems
- Metering Systems

ENERGY INTELLIGENCE, MANAGEMENT SYSTEMS

- Central Plant Implementation
- Production/Process Improvement
- BOP, Utilities Optimization

ENERGY EFFECTIVENESS SOLUTIONS

- Measurement & Verification

GLENMOUNT GLOBAL – ENERGY SOLUTIONS

Central Plant Implementation
- Production/Process Improvement
- BOP, Utilities Optimization

Measurement & Verification

Segment Specific Solutions

Technologist
- Automation & Controls Specialist

Expertise
- Engineering, Procurement & Construction

Offerings
- Segment Specific Solutions
Critical Systems Testing

• Founded in 1998 the Company has established itself as one of the premier mission critical facilities testing companies.
• Conducted over 200 data center and high performance facility commissioning, retro-commissioning or energy projects
• Specialists in High Performance Building Controls
• Focused on assuring, maintaining and improving the reliability of critical facilities.
• Provider of NETA, NIST unbiased testing
• Provider of Energy efficiency services, consulting, commissioning and design and construction services
Commissioning Process for Data Centers

- Pre-Construction Activities
 - Design Reviews (drawings and specifications)
 - Prepare Commissioning Specifications
 - Submittal Reviews
- Provide quality assurance/ quality control
- Review contractor test procedures
- Verify functionality of systems and equipment
 - Loop checks/ point to point
 - Controls sequences
 - Modes of operation
 - Failure and safety modes
 - Alarm verification
- Trend control variables for stable operation
- Assist in solving problems and resolving issues
- Manage the Integrated Systems Test (IST)
Integrated Systems Testing Protocol

- Fully coordinated test over a 3-4 day period
- Mechanical and Electrical testing while under thermal load
- Mechanical systems operation under several modes of operation
 - Normal operations
 - Economizer mode
 - Thermal energy (TES) discharge mode
 - Validation of operations at N (design) and N + 1 (redundancy modes)
- Validation under normal power and during emergency power conditions
- Simulated equipment, system and critical device failures
- Trending multiple variables to validate process, energy and interactions
Heat Load Capacitance Test

- Validate thermal conditions of data center under design load
- Thermal and electrical capacitance test under multiple load steps
- Validate design conditions.
- Disable redundant equipment.
- Set design conditions
 - In data center set equipment to maintain SLA conditions
 - Design conditions in electrical spaces and central plant
- Validate multiple design related operating modes, examples
 - Set a fixed design condenser water setpoint
 - Set a reduced condenser water setpoint if reset is a basis of design and conditions permit
 - Validate operations under economizer mode of control
Central plant loading Heat Load Capacitance Test Results

- Validate basis of design
- Validate operational conditions at each load step
 - Temperature differential
 - Plant Flow
 - Plant Tonnage
- Validate staging of central plant
- Validate system ability to maintain functional processes
 - Bypass control
 - Individual chiller staging
• Over head air distribution system
• Damper torque issue
• Dampers manually forced open
• Design of air diffusers was improper
 o Improper diffuser placement
 o High Velocity
 o Low Static
• Diffusers were re-engineered
Under floor system control based on return air temperature

Observations
- Under floor air distribution system
- Control set-up resulted in oscillatory control of VFDs and valves
- Uneven control between adjacent CRAH units
- Oscillatory control of chilled water pumps, bypass valves and chiller surging

Solutions
- CRAH unit teaming
- Convert to discharge air temperature
Specialized Testing: Central Plant waterside economization verification under load

- Central plant with 2,000 ton design load
- Tested under load in three modes of operation
 - Full mechanical chillers
 - Partial free cooling
 - Full free cooling
- Chillers stage properly during transitions
- Colocation temperature remain stable
Specialized Testing: Facility Energy Impact of Economization Under Load

- 20,000 tons of refrigerant.
- 2,500 hp compressor power
- Air handler fan power, 770 hp
- Direct expansion AHUs
- Direct economization AHUs
- Test validated performance under
 - Full refrigerant cooling
 - Full economization
- Test validated load and PUE reductions
- Test validated load switch
Specialized Testing: Temperature distribution

- Basis of design:
 - 53°F chilled water temperature
 - 60°F discharge air temperature.
 - Maintain sensible cooling range.
 - Avoid latent cooling
 - Avoid humidification
- Data loggers placed at multiple locations along the air pathway
- Coincident relative humidity distribution
- Constant dewpoint temperature
- Validated sensible cooling process
Specialized Testing: Cold aisle test with simulated AHU failures

- Test to demonstrate load capacitance of a single cold aisle at varying load steps
 - 50% design
 - 80% design
 - 100% design
 - 120% design
- Test to demonstrate to alternate modes of operation
 - Wireless aisle sensors
 - AHU return air sensors
- Test to demonstrate capacity during air handler failures.
Mechanical Failures

- Validate pump failures and alarms through multiple means
- Validate chiller failures and alarms through multiple means
 - Fail chiller at local disconnect
 - Fail chillers at MCC disconnect
 - Fail chillers by disconnecting internal flow switch
 - Fail chillers by overriding isolation valve(s) closed
- Additional failure scenarios
 - Air handlers and CRAH units
 - Cooling towers
 - Process critical monitoring devices
 - Static pressure
 - Chilled water differential
 - Temperature
 - Flow
 - Panel/ network communications

Electrical Failures

- Full utility power failure, transfer to generator, “Pull the Plug”
- MSB Failures (Transfer and Retransfer)
Central plant control during electrical failures

- Simulated loss of utility power
- Retransfer of power from generator to utility
- Simulated failure of MSB panels and recovery
- Validate facility operations under UPS power
- Verify Colocation/ data center temperature and humidity conditions during all events
Englewood, CO Data Center Case Study

Project Description
- Data Center located in Englewood, Colorado
- Housing primary servers serving the internet auction functions
- Mechanical systems serving the data floor were comprised of 30 ton split DX Liebert computer room air conditioning (CRAC) units, with pad mounted condensing units in a secure yard.
- IST scenario highlights the critical need for Integrated Systems Testing utilizing load banks on the data floor to simulate a fully occupied and operational data center prior to occupancy.

Issues & Solution
- Functional tests and subsequent capacitance tests with load banks revealed that the refrigerant charges in the CRAC units were low.
- After additional refrigerant was added, the tested cooling capacity of the CRAC units was well below the engineers design.
- Limited the number of servers that this facility could host.
- During the simulated utility loss test under full electrical load, multiple CRAC unit failures were experienced.
 - Emergency power generators started, heat plumes onto the condensers
 - CRAC units failed on high head pressure.
Los Angeles Data Center Case Study

Project Description

• High profile data center, with over 75,000 square feet of conditioned data floor area.
• Shortly after completing the project in mid 2006, the Los Angeles metro area suffered a significant ‘brown-out’
• Multiple failures in many of the local data centers.
• Data Center with the IST performed flawlessly, with no interruption to services experienced.

Issues & Solution

• Functional testing revealed many critical flaws which could have caused this facility to fail had they not been identified and remediate.
• During the failure testing under load it was noted that the chillers would shut down in a cascading failure causing complete loss of cooling to the data floor.
• Building automation system was shutting the chillers off during the restart sequence after the simulated loss of utility power test.
Questions?

Michael Rosenberg
Glenmount Global Solutions
Michael.Rosenberg@glenmountglobal.com

Jim Shigley
Critical Systems Testing
JShigley@criticalsystemstesting.com

Mark Warren
WSP Flack + Kurtz
Mark.Warren@wspfk.com