M&V of Hot Water
Boiler Plant

Boban Ratkovich, P. Eng, CEM, BESA, LEED AP
President
CES Engineering Ltd
AIA Quality Assurance

Learning Objectives

1. Case study examples of procedures and obstacles in measuring and verifying equipment efficiencies
M&V of Hot Water Boiler Plant

Project Description

• High-rise residential boiler plant retrofit projects
 ○ Existing non-condensing boilers replaced with condensing boilers
 - Performance monitoring system included within projects work scope
 » Data acquisition system integrated with BMS system
 » Metered data uploaded to EMIS for energy calculations, display and trendlogging
M&V of Hot Water Boiler Plant

Typical Project Boiler Plant Configuration
M&V of Hot Water Boiler Plant

Measurement Process

- Metering sensors
 - A natural gas mass-flow-meter installed at the gas pipe header serving all boilers
 - A supply water temperature sensor at the common supply header served by all boilers
 - Return water temperature sensors and flow sensors for the common boiler high-return, common low-return, and common domestic hot water return.
 - Boiler units start/stop signal, boiler isolation valve positions, circulation pumps start/stop signals and power consumptions.
M&V of Hot Water Boiler Plant

Initial Data Analysis

Table 1. December 2010 Monthly Average Measured Efficiency

<table>
<thead>
<tr>
<th>Building #1</th>
<th>Building #2</th>
<th>Building #3</th>
<th>Building #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>65%</td>
<td>68%</td>
<td>79%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Table 2. Manufacturer Published Efficiencies

<table>
<thead>
<tr>
<th>Firing Rate %</th>
<th>Return Water Temperature F°C (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68 (20)</td>
</tr>
<tr>
<td>20</td>
<td>99</td>
</tr>
<tr>
<td>50</td>
<td>99</td>
</tr>
<tr>
<td>75</td>
<td>98</td>
</tr>
<tr>
<td>100</td>
<td>97.2</td>
</tr>
</tbody>
</table>

85%
M&V of Hot Water Boiler Plant

So where is the problem??
What are we measuring?

- Boiler units are rated and tested primarily for combustion efficiencies.
- We are measuring thermal efficiency
- The combustion efficiencies do not account for the effectiveness of the boiler unit heat exchanger as well as radiation and convection losses.
M&V of Hot Water Boiler Plant

Operational problems?

Boilers short cycling
M&V of Hot Water Boiler Plant

Purge Losses

\[
\text{Max Purge Heat Loss (Btu)} = \text{Air Specific Heat Capacity} \left(\frac{\text{Btu}}{\text{lb} \cdot \text{°F}}\right) \times \left(\text{Stack Temp (°F)} - \text{Ave OAT (°F)}\right) \\
\times 100\% \times \text{Air Flow Rate} \left(\frac{\text{ft}^3}{\text{min}}\right) \times \text{Air Density} \left(\frac{\text{lb}}{\text{ft}^3}\right) \times \frac{15 \text{ (sec)}}{60 \text{ (sec)}}
\]

- 3500 purges in December
- Average purge loss 840BTU.
- Purge losses only 0.6% of the total gas energy for December
Heat Transfer Modeling Accuracy

- Approximation in modeling energy balance and heat losses under boiler operating condition.

- The exact energy model formula describing boiler performance using physical operating parameters does not exist.
M&V of Hot Water Boiler Plant

Boiler Plant Efficiency Calculations

Load based instantaneous value

\[
\eta_{th} = \frac{\text{Boiler Load} \left(\frac{\text{Btu}}{\text{h}} \right)}{\text{Gas Flow} \times \text{Gas Constant} \left(\frac{\text{Btu}}{\text{scf}} \right)}
\]

• Only accurate under perfectly steady condition

Energy based average value

\[
\eta_{th} = \frac{\sum_{i=0}^{n} \text{Boiler Output Energy} \left(\text{Btu} \right)}{\sum_{i=0}^{n} \text{Gas Input Energy} \left(\text{Btu} \right)}
\]

• Proper method of calculating thermal efficiency
Boiler Plant Efficiency Calculations

Energy based average value

\[
\text{Boiler Output Energy Flux (Btu)} = \frac{\text{Boiler Load}_n \left(\frac{\text{Btu}}{\text{h}}\right) + \text{Boiler Load}_{n-1} \left(\frac{\text{Btu}}{\text{h}}\right)}{2} \times \frac{(\text{Time}_n - \text{Time}_{n-1})}{60}
\]

\[
\text{Boiler Output Thermal Mass Energy (Btu)} = (\text{System Temp}_n \, (^{\circ}\text{F}) - \text{System Temp}_{n-1} \, (^{\circ}\text{F})) \times \text{System Heat Cap} \, (\text{Btu/}^{\circ}\text{F})
\]

\[
\text{Gas Input Energy (Btu)} = \frac{\text{Gas Flow}_n \, (\text{scfh}) + \text{Gas Flow}_{n-1} \, (\text{scfh})}{2} \times \frac{(\text{Time}_n - \text{Time}_{n-1})}{60} \times \text{Gas Constant} \left(\frac{\text{Btu}}{\text{scf}}\right)
\]
M&V of Hot Water Boiler Plant

Gas Input Energy
Output Flux Energy
Thermal Mass Energy

Gas Input Energy
Total Boiler Output Energy
Metering Accuracy

- The accuracy of metered data is dependant on the sensors physical characteristics, sources of error and field calibration methods.
- Physical sensors bring in fixed errors for the sensor part and associated transducer instruments or transmitters.
- Fixed and random errors are introduced by data acquisition systems infrastructure, missing and duplicated data samples, etc.
M&V of Hot Water Boiler Plant

Verification Phase

- Boiler Combustion Efficiency Test

<table>
<thead>
<tr>
<th>Average Measured Combustion Efficiency</th>
<th>Manufacturer Published Efficiency at Same Average Conditions</th>
<th>Calculated Thermal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>89.1%</td>
<td>87.7%</td>
<td>64.3%</td>
</tr>
</tbody>
</table>

Table 3. 4 hour Combustion Efficiency Test Results
M&V of Hot Water Boiler Plant

Sensors Calibration Tests

- Difference of 1 °F in the supply water temperature sensor will result in a change in thermal efficiency measurement of over 5%.
- No sensors drifting confirmed

<table>
<thead>
<tr>
<th></th>
<th>Dec-10</th>
<th>Jan-11</th>
<th>Feb-11</th>
<th>Mar-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common High Return vs. Boiler 1 High Return</td>
<td>Average Difference</td>
<td>-4.19</td>
<td>-4.13</td>
<td>-4.14</td>
</tr>
<tr>
<td></td>
<td>Standard Deviation</td>
<td>0.35</td>
<td>0.81</td>
<td>0.39</td>
</tr>
<tr>
<td>Common Low Return vs. Boiler 1 Low Return</td>
<td>Average Difference</td>
<td>-9.30</td>
<td>-9.16</td>
<td>-9.32</td>
</tr>
<tr>
<td></td>
<td>Standard Deviation</td>
<td>0.43</td>
<td>0.47</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 4 Temperature Comparison of Sensors over 4 Months
M&V of Hot Water Boiler Plant

Temperature Calibration Tests

Boiler plant supply temperature measured with 3 different temperature sensors

<table>
<thead>
<tr>
<th></th>
<th>Supply Temperature</th>
<th>High-Return Temperature</th>
<th>Low-Return Temperature</th>
<th>Domestic Hot Water Return Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average BAS Temperature During Test (°F)</td>
<td>172.7</td>
<td>129.5</td>
<td>136.9</td>
<td>152.1</td>
</tr>
<tr>
<td>Taylor Sensor vs. Boiler Plant Sensor (°F)</td>
<td>-7.4</td>
<td>-1</td>
<td>-3.2</td>
<td>-4</td>
</tr>
<tr>
<td>Fluke Sensor vs. Boiler Plant Sensor (°F)</td>
<td>-3.9</td>
<td>1.3</td>
<td>-2.6</td>
<td>-3.8</td>
</tr>
</tbody>
</table>
Temperature Calibration Tests

- Kettle of boiling water test (212°F)

<table>
<thead>
<tr>
<th></th>
<th>Supply Temperature</th>
<th>High-Return Temperature</th>
<th>Low-Return Temperature</th>
<th>Domestic Hot Water Return Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature at Boiling, 212°F (°F)</td>
<td>216.5</td>
<td>218.3</td>
<td>217.8</td>
<td>219.4</td>
</tr>
<tr>
<td>Sensor Offset Adjustment (°F)</td>
<td>-4.5</td>
<td>-6.3</td>
<td>-5.8</td>
<td>-7.4</td>
</tr>
</tbody>
</table>

Table 5. Summary of Temperature Sensors
Boiling Hot Water Test
M&V of Hot Water Boiler Plant

Flow Calibration Tests

• Difference between pump curve estimated flows and BMS reported flow from turbine flow meter

<table>
<thead>
<tr>
<th>Unadjusted December 2010 Efficiency</th>
<th>Flow Adjustment 1 Efficiency</th>
<th>Flow Adjustment 2 Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>68%</td>
<td>83%</td>
<td>87%</td>
</tr>
</tbody>
</table>

Flow Adjustment 1 Flow Adjustment 2
Linear Equation Quadratic Equation
M&V of Hot Water Boiler Plant

Performance Baselining

• Mathematical expressions that characterizes the boiler efficiency based on key operation variables (RWT, SWT, Part Load, Water Flow, Boiler Cycling, etc).

1-Hour Average Efficiency versus Return Water Temperature

1-Hour Unadjusted Efficiencies and Baseline Predicted Efficiencies
Selecting Metering Sensors Adjustments

- Suggested criteria for sensors adjustments
 - Average efficiency shall be comparable to manufacturer’s published data for properly commissioned systems
 - Error of regression calculated efficiency shall decrease with adjustments
 - Number of short term efficiencies calculated beyond 100% shall decrease with adjustment
M&V of Hot Water Boiler Plant

Selecting Metering Sensors Adjustments

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted Data</th>
<th>Overall Adj 1</th>
<th>Overall Adj 2</th>
<th>Overall Adj 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temperature Only</td>
<td>Flow Adj 2</td>
<td>Flow Adj 1 + Boiling Hot Water Voltage Offset</td>
</tr>
<tr>
<td>Dec 2010 Ave Thermal Efficiency (%)</td>
<td>68.3</td>
<td>87.7</td>
<td>87.5</td>
<td>86.5</td>
</tr>
<tr>
<td>Dec 2010 Ave Prediction Absolute Value Error (%)</td>
<td>2.5%</td>
<td>3.0%</td>
<td>2.4%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Dec 2010 Std Deviation of Absolute Value Error (%)</td>
<td>2.4%</td>
<td>2.8%</td>
<td>2.3%</td>
<td>2.1%</td>
</tr>
<tr>
<td># of Efficiencies over 100%</td>
<td>0</td>
<td>203</td>
<td>23</td>
<td>3</td>
</tr>
</tbody>
</table>

Final Overall Adjustment Selection for Building #2
M&V of Hot Water Boiler Plant

Refining the Baseline and Predicting Performance

Dec 2010 – Feb 2011 Baseline Prediction Scatter Plot

Surface Plot of 2-Variable Baseline Efficiency Equation
M&V of Hot Water Boiler Plant

Baseline and Predictions

Sample of 1 Hour Adjusted Efficiencies and 2-Variable Baseline Efficiencies

Sample of 1 Hour Adjusted Efficiencies and 4-Variable Baseline Efficiencies
M&V of Hot Water Boiler Plant

Baseline and Predictions

<table>
<thead>
<tr>
<th>Mar-May 2011 Ave Prediction Error</th>
<th>2 Variable Regression, PLR, RWT - Dec to Feb Baseline</th>
<th>4 Variable Regression, PLR, RWT, SWT, Ave Flow - Dec to Feb Baseline</th>
<th>2 Variable Regression, PLR, RWT - Mar to May Prediction</th>
<th>4 Variable Regression, PLR, RWT, SWT, Ave Flow - Mar to May Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.6%</td>
<td>-1.3%</td>
<td>2.3%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Mar-May 2011 Standard Deviation of Error</td>
<td>9.9%</td>
<td>9.6%</td>
<td>9.1%</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

Table 6. Error Summary of Baseline and Prediction for 2 and 4 Variable Efficiency Models
M&V of Hot Water Boiler Plant

Baseline and Predictions

Predicted Gas Consumption versus Measured Gas Consumption
M&V of Hot Water Boiler Plant

Sample of Performance Monitoring Dashboard
M&V of Hot Water Boiler Plant

Sample of Performance Monitoring Dashboard
M&V of Hot Water Boiler Plant

Sample of Performance Monitoring Dashboard
Portland Energy Conservation, Inc is a registered provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Thank you
Boban Ratkovich, P. Eng, CEM, BESA, LEED AP
President
CES Engineering Ltd
bratkovich@cesgroup.ca