M&V Applications and Approaches

Balancing Project Demands to Deliver an Accurate, Cost Effective, and Verifiable M&V Outcome

Doug Chamberlin, P.E., LEED AP; Director of Northwest Region
Mark Goldberg; Project Manager

August 12, 2011
Learning Objectives

1) Illustrating the shortfalls and advantages of Option A, Option B, Option C, and Option D

2) Properly matching the M&V Approach to the Project in order to avoid common pitfalls

3) Reviewing examples of past experience for what has worked best, when and why
Agenda

Introduction

M&V – What and Why

M&V Applications in the Following Fields:
- Demand Response Programs
- Retrocommissioning for Utility Programs
- Retrocommissioning for Non-Utility Programs
- Commissioning for New Construction Projects

M&V Key Considerations

Questions
Introduction

M&V – What and Why

M&V Applications in the Following Fields:
- Demand Response Programs
- Retrocommissioning for Utility Programs
- Retrocommissioning for Non-Utility Programs
- Commissioning for New Construction Projects

M&V Key Considerations

Questions
M&V – What and Why

- Measurement & Verification Definition

“Best practice techniques available for verifying results of energy efficiency, water efficiency, and renewable energy projects.” - IPMVP

- M&V strives to ensure that parties with vested interests in the outcome of energy efficiency projects agree to and accept the results
M&V – What and Why

- Commonly Used M&V Protocols
 - International Performance Measurement & Verification Protocol (IPMVP)
 - North American Energy Standards Board (NAESB) - DR Specific
 - ASHRAE Guideline 14: Measurement of Energy and Demand Savings
M&V – What and Why

- M&V is a process driven approach to determine:
 - Energy Savings
 - Water Savings
 - Peak Demand Reduction
 - Dollar Savings
 - Incentive Amount
 - Demand Response Payments
 - Performance Contract Results
 - Achievement of LEED Credits
 - Greenhouse Gas Emissions Reductions
 - Other Utility or Resource Savings
Measurement and Verification (M&V) uses measured data along with other observations, assumptions, calculations, and documentation to define baseline performance, and to estimate improvements in performance that are attributable to the project.
M&V – What and Why

- The IPMVP Protocol has become a leading standard across energy industries
 - Many State and industry specific protocols are based on IPMVP

- 4 M&V Options Within the IPMVP Protocol:
 - **Option A**: Retrofit Isolation – Key Parameter Measurement
 - Partial field measurements on the specific system(s) along with stipulated parameters are used to determine energy savings
 - **Option B**: Retrofit Isolation – All Parameter Measurement
 - Metered energy use of the specific systems is used to determine energy savings
 - **Option C**: Whole Facility
 - Metered energy use measured at the whole building level is used to determine savings
 - **Option D**: Calibrated Simulation
 - Calibrated energy models of the whole building OR components/sub-facility are used to simulate energy use and determine savings
M&V – What and Why

- An Acceptable M&V Approach:
 - Develop regression equations from metered baseline data
 - Energy use with daily Mean OSA temperature and occupancy as independent variables
 - Calculate baseline annual energy use using TMY weather data
 - Implement commissioning or retrocommissioning project
 - Develop regression equations from metered post-project data
 - Energy use with daily mean OSA temperature and occupancy as independent variables
 - Calculate post-project annual energy use using TMY weather data
 - Subtract post project energy usage from baseline to calculate savings
 - What could be easier?
M&V – What and Why

- M&V balances project demands to deliver the most accurate, cost effective, and verifiable M&V outcome

 - **Accuracy**
 - An appropriate M&V approach acknowledges and properly utilizes key variables to achieve reasonable accuracy within acceptable levels of confidence

 - **Simplicity**
 - Simplicity in the M&V approach dictates a minimum investment in scope, schedule and budget to achieve valid results

 - **Integrity**
 - An integrity driven M&V approach is repeatable, reproducible, and transparent
Agenda

Introduction

M&V – What and Why

M&V Applications in the Following Fields:

- Demand Response Programs
- Retrocommissioning for Utility Programs
- Retrocommissioning for Non-Utility Programs
- Commissioning for New Construction Projects

M&V Key Considerations

Questions
M&V in Demand Response

- M&V Approach in Demand Response is Determined By:
 - Utility Requirements
 - Threshold Requirements v. Reduction Requirements
 - Customer Load Profiles
 - Dynamic Load Profiles v. Static Load Profiles
 - Event Timeframe & Duration
M&V in Demand Response

- **Baseline Type I**
 - Baseline is based on previous days historical interval meter data and may reflect variables such as weather and calendar data
 - Performance is judged as “Dropping By”
 - Baseline shape is the average load profile, and applications include Averaging, Regression, Rolling Average or Comparable Day

- **Baseline Type II**
 - Similar approach as Baseline Type I but relies on statistical sampling where interval meter data is unavailable

- **Maximum Base Load**
 - A static Baseline is established based on averaged peak usage from previous year
 - “Dropping To” a committed consumption threshold validates compliance

- **Meter Before – Meter After**
 - Consumption profiles immediately prior to an event are compared to the profiles during an event
 - Typically only used for short events lasting under an hour
M&V in Utility Program Retrocommissioning

- **Representative Utility Programs**
 - UC/CSU IOU Monitoring Based Commissioning Program
 - PG&E Core Retrocommissioning Program
 - ComEd Retrocommissioning Program
The CSU/UC IOU Energy Efficiency Partnership is a statewide energy management program in California directing monitoring based commissioning procedures and services at thirty-three UC and CSU campuses in conjunction with four California Investor Owned Utilities (IOUs).

Program Directives:
- Implement an M&V Plan to install permanent whole-building meters on electricity, and piped utilities for each building.
- Implement a database program to monitor and evaluate whole-building trend data with a 10-year storage capacity.
- M&V Plan should be in accordance with IPMVP guidelines, the preferred M&V method in **Option C**, and other options may be used with justification.
- Baselines should be based on three months of data excluding January and July.
M&V in Utility Program Retrocommissioning

UC/CSU IOU Monitoring Based Commissioning

○ Option C Advantages
 ○ Standard Approach for wide-deployment across all utilities for a multitude of buildings benefitting MBCxA’s, campuses, and utilities
 ○ MBCxA can standardize data collection and analysis techniques

○ Caveats to an Option C Approach
 ○ Significantly dynamic or intermittent process loads may skew monitored data within either sampling period
 ○ Bad or poorly calibrated meters can ruin results
 ○ Case Study Example: Process Load driven buildings
 - College Student Laboratory where HVAC equipment represents approximately 12% of building peak electrical demand

○ Alternative approaches may be Option A, Option B, or Option D, but Option D is typically preferred
PG&E Core Retrocommissioning Program

- Pacific Gas & Electric’s Core RCx program is designed to provide technical and financial resources enabling RCx for the utility’s customers
- Program Directives:
 - The Customer agrees to an investment responsibility equal to the total implementation cost of all RCx measures identified having a simple payback less than or equal to one year, or $25,000, whichever is less.
 - Savings must be calculated per measure
- Program is EEM driven
- Because no specific option is mandated, web-hosted calculators, Option A, Option B, or Option D are all feasible
 - Savings must be presented on a measure by measure basis
 - Savings of any one measure will probably not be greater than 10%
 - Option D would allow model run iterations per measure
M&V in Utility Program Retrocommissioning

PG&E Core Retrocommissioning Program

<table>
<thead>
<tr>
<th>Measure Size</th>
<th>Initial Savings Calculation by Provider</th>
<th>Source of Initial Savings Submitted</th>
<th>Source of Final Savings Claimed</th>
<th>M&V Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (BOA Tool Applies)</td>
<td>Savings < 75,000 kWh/yr or Savings < 5,000 th/yr</td>
<td>BOA Tool Results</td>
<td>BOA Tool Results</td>
<td>Pre- and Post-Implementation Snapshot</td>
</tr>
<tr>
<td>Small (BOA Tool Does Not Apply)</td>
<td>Savings < 75,000 kWh/yr or Savings < 7,500 th/yr</td>
<td>Initial Savings Calculation by Provider</td>
<td>Initial Savings Calculation by Provider verified by snapshots</td>
<td>Pre- and Post-Implementation Snapshot</td>
</tr>
<tr>
<td>Medium</td>
<td>75,000 kWh/yr < Savings < 200,000 kWh/yr or 7,500 th/yr < Savings < 20,000 th/yr</td>
<td>Initial Savings Calculation by Provider</td>
<td>Initial Savings Calculation, Adjusted for Pre- and Post-Implementation Trends</td>
<td>Pre- and Post-Implementation Trend Logging</td>
</tr>
<tr>
<td>Large</td>
<td>200,000 kWh/yr < Savings or 20,000 th/yr < Savings</td>
<td>Initial Savings Calculation by Provider</td>
<td>Calculations Based on Pre- & Post-Implementation Measurements</td>
<td>Pre- and Post-Implementation Trend Logging</td>
</tr>
</tbody>
</table>

Table 7 of the RCx Investigation Report Handbook V1.2, RCx Submittals Guideline Companion; 04/11/2011
ComEd Smart Ideas for Your Business Commercial Retrocommissioning

- ComEd’s RCx program offers energy analysis services to identify no-cost and low cost measures
- Program Directives:
 - Program participants commit to spend at least $10,000 or $20,000 (depending on project size) to implement identified and agreed-upon retro-commissioning measures (RCMs) resulting in a bundled package offering an estimated simple payback of one-and-a-half years or less based upon electric savings. Savings must be calculated per measure.
- Program is EEM driven
- Program requires Option A or Option B
 - Savings must be presented on a measure by measure basis
 - Savings of any one measure will probably not be greater than 10%
 - EEMs may be bundled to achieve maximum savings within payback requirements
M&V in Non-Utility Retrocommissioning

- RCxA must draft the most appropriate M&V Plan per the Project Scope, Project Budget, and Project Schedule:
 - Estimate the level of expected or available savings
 - Identify existing / proposed metering
 - Identify acceptable reporting tolerances
 - Identify key Independent Variables
 - Outside Air Temperature
 - Occupancy
 - Time-Of-Day (TOD) Building Use
 - Production Quantities in Manufacturing Plants
M&V in Non-Utility Retrocommissioning

- Identify if best results would be derived from a systems or whole building approach
- Use a process of elimination within the available options
 - Typically want to use Option A if possible to minimize cost of energy metering, look for constant load, constant use measures
 - If RCx impacts one specific metered system (e.g. a chiller replacement), it is almost always effective to use Option B
 - If many smaller systems are affected, if measures interact significantly, or if savings are greater than 10% of the whole building energy consumption, then Option C is most effective
 - Option D provides the greatest flexibility but at the greatest cost
M&V in Non-Utility Retrocommissioning

- Issues to keep in mind:
 - Do savings need to be shown per measure?
 - e.g. Are incentives available only for a subset of the measures?
 - Are there penalties if estimated savings or payback are not met?
 - Do measures have significant interactive effects?
 - e.g. Will lighting measures reduce electricity but increase mechanical heating loads?
 - Are baseline adjustments expected?
 - e.g. Offices that were vacant at the beginning of the projects are now occupied.
 - What seasonal, occupancy, or load variances expected?
 - All Options and approaches may be valid
 - RCxA should be aware of available incentives and any M&V requirements mandated by the funding source
 - RCxA should be aware of subsequent or ongoing persistent retrocommissioning requirements in order to enable future M&V efforts
M&V in New Construction Commissioning

- **Motivation** – determine the effectiveness of additional capital investment in building design, construction and commissioning for energy efficiency

- CxA must draft the M&V Plan using the most appropriate approach taking into account the Owner’s Project Requirements, Project Scope, Project Budget, and Project Schedule
 - Identify standard against which the building will be compared
 - e.g. ASHRAE 90.1, or local codes if more stringent (CA Title 24)
 - If a majority of building equipment and systems exceed the standard building, Option D is recommended
 - If only one or a few systems are expected to contribute to energy savings, Option B is recommended
 - Option C is not typically used because there is no building/baseyear for which trend data may be gathered
M&V in New Construction Commissioning

- Develop and implement a Measurement and Verification Plan consistent with LEED requirements if LEED certification is desired
 - 3 LEED Points available for an approved and implemented M&V Plan
 - LEED typically requires Option D, Savings Estimation Method 2
 - Option B may be permitted for buildings with simple systems
 - Only Option B and Option D may be used in LEED
 - Develop a process for corrective action if the results of the M&V process indicate that energy savings are not being achieved.
- Develop a baseline whole building energy model and simulate the effect of energy efficiency measures
- Include all necessary metering equipment and trend logging requirements in project construction documents
- Install metering equipment and set up trend logs during construction.
- Review sample trend logs to confirm data quality meets expectations.
- Conduct comparison of actual energy usage to modeled usage after one-year of post-construction occupancy
- Subtract the metered post-construction energy use from the energy use of the calibrated baseline model
Introduction
M&V – What and Why
M&V Applications in the Following Fields:
 • Demand Response Programs
 • Retrocommissioning for Utility Programs
 • Retrocommissioning for Non-Utility Programs
 • Commissioning for New Construction Projects
M&V Key Considerations
Questions
M&V Key Considerations

To balance Simplicity, Integrity, and Accuracy, consider the project’s starting point, the expected path of the project, and the final deliverables.

<table>
<thead>
<tr>
<th>ECM Project Characteristic</th>
<th>Suggested Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need to assess ECMs individually</td>
<td>X X X</td>
</tr>
<tr>
<td>Need to assess only total facility performance</td>
<td></td>
</tr>
<tr>
<td>Expected savings less than 10% of utility meter</td>
<td>X X X</td>
</tr>
<tr>
<td>Multiple ECMs</td>
<td>X X X</td>
</tr>
<tr>
<td>Significance of some energy driving variables is unclear</td>
<td></td>
</tr>
<tr>
<td>Interactive effects of ECM are significant or unmeasurable</td>
<td>X X X</td>
</tr>
<tr>
<td>Many future changes expected within measurement boundary</td>
<td></td>
</tr>
<tr>
<td>Long term performance assessment needed</td>
<td>X X X</td>
</tr>
<tr>
<td>Baseline data not available</td>
<td></td>
</tr>
<tr>
<td>Non-technical persons must understand reports</td>
<td>X X X</td>
</tr>
<tr>
<td>Metering skill available</td>
<td>X X X</td>
</tr>
<tr>
<td>Computer simulation skill available</td>
<td></td>
</tr>
<tr>
<td>Experience reading utility bills and performing regression analysis available</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3: Suggested Options, IPMVP Vol I; 2007, p.54
M&V Key Considerations

- Create an M&V approach that balances accuracy, simplicity, and integrity
- Identify and Comply with any Program Requirements
- Maintain flexibility throughout the M&V process
- Results are more important than process
- CxA should be aware of subsequent or ongoing persistent retrocommissioning requirements in order to enable future M&V efforts
- Are results intended to serve as the basis for an Incentive application or to inform Energy Management decisions
Introduction
M&V – What and Why
M&V Applications in the Following Fields:
 • Demand Response Programs
 • Retrocommissioning for Utility Programs
 • Retrocommissioning for Non-Utility Programs
 • Commissioning for New Construction Projects
M&V Key Considerations
Questions
Portland Energy Conservation, Inc is a registered provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Thank You!

Douglas R. Chamberlin, P.E., LEED AP
Mark Goldberg

dchamberlin@enernoc.com
mgoldberg@enernoc.com