Commissioning Design Phase At Columbia University

Sean Whelan
Anthony Avendano
AIA Quality Assurance

The Building Commissioning Association is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES). Credit(s) earned on completion of this program will be reported to AIA/CES for AIA members. Certificates of the Completion for both AIA members and non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Learning Objectives

1. Demonstrate the value of having established University Design Requirements.
2. Amplify the importance of involving the operations staff in the commissioning process beginning at the conceptual / design phase.
Columbia University Overview

- Any given time: 90 projects in some phase of construction.
- $40-70 MM per year of contracted capital projects.
- 7 MM square feet of academic/residential space on the Morningside campus portfolio.
- 121 Buildings in portfolio.
- Full time internal commissioning engineers to facilitate the process.
Design Review Process

• CUCx is alerted to new project. CUCx reviews schematic design, design development, and construction documents.
• At each phase two weeks of review time is allocated for internal review.
• Copies of each design is distributed to each respective shop: M, E, P, FP, FA.
• Design also reviewed by dedicated internal Mechanical and Electrical engineers.
• Comments are aggregated and accumulated and sent back for incorporation in the next phase.
Commissioning Spec

• CU Design Requirements have an outlined commissioning portion followed on all projects.
• Generally do not include this within A/E’s spec book.
• If included, usually copied directly in from CU Design Requirements.
OPR / BOD

• A feasibility study generally outlines the project requirements, acting as the OPR.

• Always should include:
 • Temperature / Humidity requirements
 • Noise Criteria
 • Vibration Criteria
 • Hours of operation
 • Any chemical / hazard exposures
Cx Plan

• Because of the internal nature of the design phase, the Cx Plan is not incorporated at this stage.
• A/E and Bidders are pointed to the CU Design Requirement for commissioning.
• When utilizing a third party, we require the 3rd party agent to develop a Cx Plan for the construction phase, commissioning phase, and turnover phase.
Design Phase Cx Kick Off Meeting

• University Staff (CUCx, Operations, Capital Project Management) attend the design phase meetings with the A/E Team.
• We work in conjunction to provide feedback from an operational standpoint.
• University staff ensure that the design phase milestones incorporate commissioning reviews, and preliminary construction schedules incorporate commissioning activities.
Why involve the operations staff?

- Daily involvement in maintaining the building – know about the problem areas before anyone else does.
- Knowledge of adjacent systems, central plants, loads, capacities.
- Preferences are made known when it comes to tapping off for electrical, or mechanical systems, etc.
- Awareness of impending system shutdowns. Time to prepare and plan.
- Identifying potential internal, non-contracted work to facilitate the project.
Backchecks

- Comments are aggregated in a spreadsheet and responses from the Design Team are expected on each line item.
- Upon each design phase, original comments are back-checked and verified against the new documents to ensure incorporation.
- Any comments that were not picked up are highlighted. Some comments that are no longer relevant, or necessary are also removed.
Page Turns

- If required on large projects, a page turn is conducted with the respective shops, the commissioning team, and the design team.
- Weekly participation from shops at scheduled times ~1 hr a week, as needed.
Why keep it internal?

- Best Practices usually dictate the independent third party CxA to review the design.
- We opt for internal because:
 - Projects don’t always pan out, sometimes die at DD/CD phase prior to construction. Funding a 3rd party to execute this would be difficult from a funding standpoint.
 - Schedule dictates two week turnaround of comments. Procuring / bidding services is difficult in that time frame.
 - Internal institutional knowledge is preferable to fresh eyes reviewing only project documents. – Bigger campus picture.
Why keep it internal?

We opt for internal because:

- Projects run adjacent and simultaneously. They may interact – 3rd party may not be aware of these.
- Intimate understanding of University Design Requirements.
- Efficiency of labor – a complete understanding of the whole building(s) / campus level systems would require more effort than it’s worth.
- Proximity: On campus, immediate field access, logistics.
- Existing Buildings: Nearly all projects on our campus are built within an existing building.
Why keep it internal?

- We opt for internal because:
 - Knowledge of “Big Picture” initiatives that may come down the pipeline, and effect the ‘future’.
CU Design Requirements

- http://facilities.columbia.edu/design-requirements
- Online
- Public
- Comprehensive
- Updated periodically
- Masterspec formatted
Preferred Manufacturers

- Lists manufacturers (and sometimes models) of products that we are comfortable using.
- Keeps Operations staff narrowly focused.
- Keeps components consistent.
- Keeps attic stock at a minimum.
Deviations from CU Design Requirements

- The CU Design Requirements govern most decision points, but there are times when deviation is necessary:
 - Specific laboratories / criteria / tolerances
 - Integration with legacy systems
 - Physical limitations
 - Researcher’s specification / requirements
 - Pilot projects to test certain technologies / vendors.
Internal Design Review Challenges

• Scope creep from Operations.
 • Wishlist development.
• Marrying the engineer’s specs as close to the design requirements as possible.
• Changing technology / manufacturers / vendors / codes.
• Incorporating legacy systems. (BMS / Fire Alarm / Grandfathering)
• Overloading: ~5-10 design reviews in progress at any given time. Operations may not have the bandwidth to participate in reviews.
Transition to Construction

- At construction phase, a 3rd party is usually utilized to execute a design CU is internally comfortable with.
 - Staff Augmentation
 - Competitive Bidding
 - Internal Commissioning
 - Conflicts
 - Minimal project scope
 - 3rd party may execute the final backcheck of design review comments:
 - Increase familiarity with project.
 - Understand the highlights of where we foresaw issues
Transition to Construction (cont.)

• Commissioning Staff now transitions to managing the third party.
• Third party CxA carries project through turnover back to Operations